I-65

COMPOUNDS CONTAINING $C=SF_4$ AND $-C-SF_4$

G. Kleemann, B. Potter, K. Seppelt* and J. Vessel

Institut für anorganische und analytische Chemie, Freie Universität, Fabeckstrasse 34–36, 1000 Berlin 33 (F.R.G.)

The preparations of $CH_2=SF_4$ and $CH_3-CH=SF_4$ are presented and the structures are discussed. Addition reactions of polar species give a wide range of new compounds, like $Hg(CH_2-SF_5)_2$, $F_4As-CH_2-SF_5$, cis-Br-SF_4-CH_3, cis-F_5Se-O-SF_4-CH_2Br, a.o. While $CH_2=SF_4$ decomposes at room temperature slowly to $CH_2=CH_2$ and SF_4 , at high temperatures HF and CSF_2 are formed. $CH_3-CH=SF_4$ gives mainly CH_3CHF_2 at room temperature. The "saturated" compounds CH_3-SF_5 and $C_2H_5-SF_5$ have been prepared. They react with SbF_5 in SO_2 at low temperatures to form the cations $CH_3-SF_4^+$ and $C_2H_5-SF_4^+$. The $CH_3-SF_4^+$ ion has been investigated in detail by nmr methods at low temperatures. It decomposes to CH_3 and SF_4 , which react further in the SO_2/SbF_5 system to CH_3-OSO^+ and SF_3^+ .

I-66

TRANSITION METAL CHLOROFLUORIDES

M. Mercer

Department of Chemistry, University of Glasgow, Glasgow G12 8QQ (U.K.)

Halogen exchange reactions between transition metal hexafluorides, MoF_c, WF_c, ReF_c and IrF_c with chlorides TiCl₄, SnCl₄, SOCl₂ and SiCl₄ have led to a wide range of products, many of which have not been reported previously, e.g. Mo(VI) Cl_xF_{c-x} series for Mo and Re; and ReCl₆ as a pale grey product, volatile at 150°C under vacuum.

The products were studied by mass spectrometry, n.m.r. spectroscopy (Mo VI) and single crystal X-ray crystallography.

The mass spectra showed the presence of multi-nuclear Re species, and all possible oxide chlorides of Re. The oxide chlorides, ReOC1, and ReOC1, and ReO.C1, have been prepared separately. Al powder was used as a reducing agent on the higher valency states.

Stabilisation of compounds by complexing with ligands: triphenyl phosphine oxide, and pentafluoroaniline and aniline has been investigated.